Pointwise convergence of ergodic averages in Orlicz spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Convergence of Ergodic Averages in Orlicz Spaces

converge a.e. for all f in L log log(L) but fail to have a finite limit for an f ∈ L. In fact, we show that for each Orlicz space properly contained in L, 1 ≤ q < ∞, there is a sequence along which the ergodic averages converge for functions in the Orlicz space, but diverge for all f ∈ L . This extends the work of K. Reinhold, who, building on the work of A. Bellow, constructed a sequence for w...

متن کامل

Pointwise Convergence of Some Multiple Ergodic Averages

We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...

متن کامل

Convergence of Diagonal Ergodic Averages

The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...

متن کامل

Spaces of Infinite Measure and Pointwise Convergence of the Bilinear Hilbert and Ergodic Averages Defined by L-Isometries

We generalize the respective “double recurrence” results of Bourgain and of the second author, which established for pairs of L∞ functions on a finite measure space the a.e. convergence of the discrete bilinear ergodic averages and of the discrete bilinear Hilbert averages defined by invertible measure-preserving point transformations. Our generalizations are set in the context of arbitrary sig...

متن کامل

Convergence of weighted polynomial multiple ergodic averages

In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2011

ISSN: 0019-2082

DOI: 10.1215/ijm/1355927029